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Analytical Modeling Framework to Assess the Economic 
and Environmental Impacts of Residential Deliveries, and 
Evaluate Sustainable Last-Mile Strategies  

EXECUTIVE SUMMARY 

In the last decade, e‐commerce has grown substantially, increasing business‐to‐business, 
business‐to‐consumer, and consumer‐to‐consumer transactions. From being at a lowly 4% in 
2009, today e-commerce amounts to about 10% of the total retail sales (U.S. Census Bureau, 
2018). As a result, the individual shopping behaviors have undergone considerable 
transformation, consequently transforming commodity flow and urban goods distribution. It is 
understood that since delivery trucks optimize their routes, e-commerce has the potential to 
reduce the negative impacts of shopping on the environment, and therefore is much more 
sustainable than shopping trips to stores using personal cars. However, in a quest to achieve 
larger market shares, e-retailers make lucrative offers to its consumers, offering free shipping, 
free returns, same-day, 1-hr/2-hr expedited (rush) deliveries and more. This has made last-mile 
ever more demanding, both in terms of economic as well as environmental sustainability. The 
benefits from shopping online are wiped out by rush deliveries as it compels the e-retailers to 
ship packages at lower consolidation levels leading to higher amounts of shorter tours, thus, 
increasing the distances driven, costs and emissions (Tozzi et al., 2013). Free returns is yet 
another way e-retailers pursue larger market shares. The apparel industry, in particular, 
witnesses exceptionally high rates of returns. Cullinane et al. (2017) found these return rates to 
range between 25% and 45%. This results in additional distances driven, additional emissions, 
and also increases cost of operation for the e-retailer. Hence, in general, one can conclude that 
such lucrative offers negatively affect the efficacy of last-mile distribution. The increasing 
customer expectations in terms of lead-time, delivery time and return policy has made the last-
mile operators to develop alternate strategies for last-mile distribution. Thus, the purpose of 
this work is to develop an analytical framework, starting from demand estimation, modeling 
last-mile operations using Continuous Approximation (CA), and developing a cost-based 
sustainability model, to assess last-mile sustainability of commonly deployed last-mile 
strategies. 

Impact of Time-windows 

The study discusses the impacts of time-windows and facility location, in particular on the cost 
trade-offs for door-to-door delivery operated with a diesel fleet. Shorter time-windows reduce 
load utilization factors for the fleet which increases the fleet size, and in-turn the transportation 
costs. Therefore, to contend with higher transportation costs, the e-retailer requires locating 
the distribution facility closer to the market, trading off transportation costs for facility location 
cost. When there are no time-windows constraints, the e-retailer could optimally locate at the 
edge of the service region. As the time-windows get shorter, there is a need to be even closer 
to downtown LA (which is assumed to be the center of the service region), with total costs 
increasing (from the no time-windows case) by 47%, 133% and 297% for the 3hr, 1.5hr and 1hr 
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time-windows, respectively. These results thus demonstrate the exponential effects of 
temporal restrictions on last-mile delivery. 

Service Comparisons 

One of the main objectives of this paper is to understand the efficacy of different last-mile 
strategies, namely, door-to-door delivery with diesel (D2D - Diesel), electric (D2D - electric) and 
crowd-sourced fleet (D2D - Crowdsourced), micro-hub based delivery in combination with 
cargo-bikes (MH - Cargo bikes), and collection point based pickup (CP). Of particular interest are 
the impacts on total and emission costs. As time-windows got stricter, micro-hubs based 
delivery and collection point based pick-up outperform conventional truck based delivery, be it 
diesel or electric fleet. Amongst the two, while electric fleet has a high procurement cost, the 
lower operating costs over the period of 10 years of operation renders operational as well as 
external benefits. Back to collection points, as the responsibility of deliveries is transferred from 
e-retailer to the customer traveling to pick-up at the collection point, the operational cost 
reduces though at the expense of higher emission cost. On the other hand, the crowd-sourced 
delivery, due to its lower cost services (lower time-based fee, and no or lower upfront cost), 
renders significant reductions in shipping costs to the retailer, while at the same time since 
deliveries are consolidated, emissions could reduce. 

To conclude, it could be argued that e-commerce delivery services are logistically efficient and 
could further be made environmentally sustainable with the ability to consolidate and replace 
inefficient shopping trips. However, the results of this study show that externality costs 
increase exponentially as shorter delivery time-windows are introduced. While companies 
could mitigate increased operational costs by locating closer to their customers (consistent with 
other facility location studies), delivery time-windows still increase the overall rate of emissions 
generated to serve the market. There are strategies, such as using cleaner vehicles, alternative 
delivery modes, or demand consolidation at delivery points, which could mitigate some of 
these impacts. In fact, the study found significant benefits from out-sourcing delivery, either in 
the form of customers picking up their packages at the collection points or by crowd-sourcing 
deliveries. In particular, the results show the benefits (reduced operating costs) of out-sourcing 
delivery, though these benefits may be realized at the expense of social costs in the form of 
additional externalities. The results also highlight the importance of considering these freight 
trends in planning efforts, especially those related to land use. For instance, providing land uses 
for the location of these facilities near customers will reduce emissions and costs; albeit the 
increased freight activity may generate negative impacts locally. Today, the retail landscape is 
changing and delivering goods through multiple channels, many with the consumer as the final 
destination. All of these changes require fundamental reconsiderations of traditional logistics 
problems (for researchers) and decisions (for carriers and other logistics agents). The 
companies are still adapting, whereas the planning process is lagging; this is even more critical 
at the local level.
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I. Introduction and Background 

The past couple of decades have witnessed an evolution in individual’s commute and goods 
shipment—the two fundamental facets of transportation. On one hand, shared mobility 
services render a novel alternative for commute, concomitantly the advent of e-commerce has 
significantly reshaped our shopping behaviors, thus influencing the latter. The common 
denominator in both being the Internet. August 11, 1994 marks the day when the first ever 
internet-based retail transaction took place (Lewis, 1994). With about 90.8% internet 
penetration in the U.S. today (Clement, 2019a), e-commerce has grown further into the retail 
sector. From being at a lowly 4% in 2009, today e-commerce amounts to about 10% of the total 
retail sales (U.S. Census Bureau, 2018). In this last decade, e-commerce sales grew at a steady 
pace averaging around 15%, while the total retail sales in this time grew at a rate of 4.4% (U.S. 
Census Bureau, 2018). As a result, the individual shopping behaviors have undergone 
considerable transformation. A UPS (2017) study found that unlike the traditional way of 
shopping, wherein a person would search and buy products in a store, today, 36% of one’s 
shopping activities (search and purchase) are conducted via multiple channels, while another 
43% are conducted solely online, and only 21% are conducted in stores. To realize this impact 
on individual shopping behavior, Mokhatarian (2004) developed a conceptual framework. In 
particular, the study categorized the inter-relation between online and in-store shopping as 
complementary or substitution effect. A complementary effect occurs when part of an 
individual’s overall shopping activity transpires online and part of it takes place in-store, while a 
substitution effect occurs when the online shopping activity replaces travel to a store.  

A large part of the literature on shopping behavior has rather observed the former—a 
complementary effect. Rotem-Mindali and Salomon (2007), for instance, suggest that a 
substitution effect, if evident, is only minor in magnitude; only a handful of studies therefore 
have found a significant substitution effect. Weltevreden and Rietbergen (2007) is one of such 
few studies that have documented a substitution effect. This Dutch case study addressed the 
impacts of online shopping on the frequency and amount of in-store purchases made, both of 
which reduced substantially for people who made online purchases. However, in yet another 
Dutch study (Farag et al., 2007), the authors corroborated a complementary relation. The study 
found a positive effect of product-searching online on both online as well as in-store shopping. 
Ferrel (2004) and Lee et al. (2017) are some other studies that found a complementary effect of 
online shopping on in-store shopping. A few studies have also used self-stated surveys to 
determine the relation between online and in-store shopping. While Zhou and Wang (2014) 
employed the National Household Travel Survey (NHTS), Jaller and Pahwa (2020) used the 2016 
American Time Use Survey (ATUS) to unravel behavioral effects. The former found a 
complementary effect of online shopping on in-store shopping and a substitution effect the 
other way, thus suggesting an asymmetric effect. The latter however suggests, “… that 
substitution and complementary effects must only be discussed for each shopping category 
separately (for example, grocery shopping or book shopping). Generalizing substitution or 
complementary effects over the entire shopping behavior leads to aggregation impacts.” Other 
than these two discussed effects of e-commerce, the low cost of acquiring information online 
can also stimulate demand. Induced demand can transpire either on one’s own shopping trips, 
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hence inducing demand under complementary; or online when one purchases products that 
would not have been bought otherwise, hence inducing demand under substitution (Lee et al., 
2017). In general, all of these effects modify, in different ways and forms, the way we shop.  

These changes in shopping behavior in turn affects the shopping related travel and associated 
externalities. While the 2016 ATUS data reveals that 14% of all the trips made during the day 
are shopping trips, it is likely that the number of shopping trips could decrease due to e-
commerce. Furthermore, it is understood that since delivery trucks optimize their routes, e-
commerce has the potential to reduce the negative impacts of shopping on the environment, 
and therefore is much more sustainable than shopping trips to stores using personal cars. A 
number of studies have analyzed these externalities from freight movement in the context of 
online shopping (Brown and Guiffrida, 2014; Durand and Feliu, 2012; Jaller and Pahwa, 2020; 
Siikavirta et al., 2003; Wiese et al., 2012; Wygonik and Goodchild, 2016). A study conducted in 
Helsinki, the capital of Finland, analyzed transportation related externalities from e-commerce, 
in particular from the e-grocery segment Siikavirta et al. (2003). The study found e-grocery to 
perform significantly better than making a shopping trip to a grocery store, cutting down driven 
miles and emissions by at least 54% and 18% respectively. In a similar work, Durand and Feliu 
(2012) found a potential reduction in VMT by nearly 20% with e-grocery at a market 
penetration of 50%. These studies suggest that with a sizeable market share, sustainable last-
mile operations, and consumers substituting towards online shopping, e-commerce can 
manifest significant reductions in the negative externalities of freight transportation. Sizeable 
market share is indeed an essential requirement for e-commerce to function sustainably. And 
while the 2016 ATUS data shows only 4% of daily shopping activities to be conducted online, 
the above studies assumed some level of market penetration for e-commerce, thereby 
exaggerating benefits from e-commerce. Jaller and Pahwa (2020) plugged this very gap in the 
literature. The authors first modeled the individual shopping behavior and then expanded these 
shopping behaviors to a macro-level, thus accurately estimating the environmental impacts of 
changing shopping practices. Unlike the previous studies, the study found a more plausible and 
realistic potential for e-commerce in reducing shopping related externalities. The authors found 
7% reduction in VMT from shopping online compared to shopping in-store, and a potential to 
further cut it down by 80% if the online platform becomes the dominant choice (as also 
estimated by other studies at higher penetration levels).  

Despite the internet penetration reaching saturation levels, e-commerce is far from being 
saturated. As discussed above, the 2016 ATUS shows only 4% of all daily shopping activities to 
be internet based Jaller and Pahwa (2020). This presents a huge scope for e-retailers to further 
expand. And in a quest to achieve larger market shares, e-retailers make lucrative offers to its 
consumers, offering free shipping, free returns, same-day, 1-hr/2-hr expedited (rush) deliveries 
and more. This has made last-mile ever more demanding, both in terms of economic as well as 
environmental sustainability. The benefits from shopping online are wiped out by rush 
deliveries as it compels the e-retailers to ship packages at lower consolidation levels leading to 
higher amounts of shorter tours, thus, increasing the distances driven, costs and emissions 
(Holguín-Veras et al., 2011; Holguín-Veras et al., 2015; Jaller et al., 2019; Tozzi et al., 2013). 
Wygonik and Goodchild (2016) corroborated this strong correlation between time-window 
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length and emissions. Pahwa and Jaller (2020) quantified a 180% increment in emissions from 
shorter time-windows. Free returns is yet another way e-retailers pursue larger market shares. 
The tendency among the online shoppers to return products is not founded in the functional 
errors of the products but in lack of satisfaction arising from lack of information about the 
product. The apparel industry, in particular, witnesses exceptionally high rates of returns. 
Cullinane et al. (2017) found these return rates to range between 25% and 45%. Due to lack of 
information on suitability of an apparel, 40% of online shoppers order multiple sizes of the 
same product and then return all but one (TruleSolutions, 2017). This results in additional 
distances driven, additional emissions, and also increases cost of operation for the e-retailer. 
However, not providing free returns to its consumers in the first place puts the retailer under 
the risk of losing the consumer itself. This therefore compels the e-retailer to provide free 
returns, face the additional operational cost, only to keep the consumer happy. Hence, in 
general, one can conclude that such lucrative offers negatively affect the efficacy of last-mile 
distribution. The above studies therefore highlight the importance of stakeholders. In 
particular, consumers and e-retailers must consolidate their demand and deliveries 
respectively, while planners and regulators must manage the urban freight system to foster 
sustainability. 

The increasing customer expectations in terms of lead-time, delivery time and return policy has 
made the last-mile operators to develop alternate strategies for last-mile distribution. Delivery 
consolidation at micro-hubs is one of many such alternate strategies. Typically, a micro-hub is 
coupled with an alternate delivery vehicle which tends to be low-volume low-pollution vehicle, 
thus limiting the use of long-haul trucks in the residential areas. With recent development in 
battery technology, electric vans have become increasingly viable option for last-mile service. 
On the other hand cargo bikes render ease of access and ease of parking, which otherwise (with 
trucks) would be a trouble, especially in highly dense localities of the city (Choubassi et al., 
2016). Testing the effectiveness of electric vans Davis and Figliozzi (2013) and cargo bikes 
Tipagornwong and Figliozzi (2014) in last-mile distribution, the aforementioned studies 
developed distribution structure that beckon the use of corresponding alternate fuel vehicle. 
Tipagornwong and Figliozzi (2014), for instance, found cargo-bikes to be competitive with 
traditional diesel vehicles when delivery structure is time constrained but not constrained by 
delivery volume, as is in the case of courier delivery. However, when the temporal constraints 
become too binding, e-retailers can offer its consumers a collection point alternative at the 
nearest possible locker or a store. This can significantly reduce the distance driven, the number 
of failed deliveries, and in turn the operation cost for the e-retailer. Gevaers et al. (2014) 
established that using a collection point can result in ~16% reduction in delivery costs per 
package. These potential reductions in operational cost for the e-retailer however come at the 
expense of increased social cost in terms of the externalities from individual travel to the 
collection point. Beyond the above discussed last-mile strategies, other strategies include use of 
robots and drones (Goodchild and Toy, 2018) from a vehicle acting as a mobile consolidation 
facility, outsourcing delivery through crowdsourcing (Pahwa and Jaller, 2020) and more.  

These recent developments in e-commerce and the advancements in information technology 
has prompted research to analyze last-mile sustainability. The conventional approach to such 



 9 

analysis involved development of complex discrete models, which quickly grew out of the scope 
of computational capacity as the problems grew in width and depth (e.g., number of facilities, 
vehicles, demand). Alternatively, Continuous Approximation (CA) techniques modeled 
parameters and decisions as continuous density functions. This is a sound compromise between 
accuracy and practicality. In particular, CA-based estimation can be very useful to the e-retailer 
when making strategic decisions, especially when operating costs may be needed but the 
precise plan cannot be established. In the context of routing problems, Daganzo (1984b) 
developed an upper bound for the length of a TSP. Expanding further, Daganzo (1984a, 1984b), 
developed an upper bound for the distance (total tour length) traveled by a fleet of size 𝑚 
serving 𝑁 customers from a depot located at a distance 𝜌 from the service region with 
customer density 𝛿, as shown in Equation 1. The first term of this equation represents the 
distance traveled from the depot to the service region, or the long-haul, while the second term 
represents the distance traveled between customers, or the last mile, where 𝑘 is a constant. 

𝑇𝐿 = 2𝜌𝑚  +
𝑘𝑁

√𝛿
 (1) 

The above equation thus develops an approximation to the Capacitated Vehicle Routing 
Problem (CVRP) assuming customers are randomly and uniformly distributed within the service 
region. Breaking free of this assumption, Çavdar and Sokol (2015) developed a distribution-free 
approximation, accounting for customer dispersion and closeness to the center (of the service 
region). Many other studies have likewise modified the routing formulation for the purpose of 
their work and to better approximate the tours. For instance, Figliozzi (2008) modified the last-
mile term of Equation 1 by a factor of (𝑁 − 𝑚) 𝑚⁄  to correct for tours with fewer customers 
served. Using the asymptotic properties of the VRP, Figliozzi (2009) developed an 
approximation for the VRP with time-windows, sequencing customers within a time-window 
with some probability. Applications to the original or such modified formulations are abundant 
and can be broadly categorized by the purpose of use as: Districting, Location, Fleet 
Composition and Routing problem (Franceschetti et al., 2017). The latter three specifically fall 
within the context of last-mile distribution. Tipagornwong and Figliozzi (2014), for instance, 
conducted a CA-based feasibility analysis for last-mile operations, comparing cargo-bike and 
traditional diesel truck operations for parcel and courier services. Similarly, Davis and Figliozzi 
(2013) studied the economic feasibility of replacing the conventional diesel fleet with electric 
fleet, estimating operation costs using CA. Analyzing an alternate last-mile distribution 
structure, Roca-Riu and Estrada (2012) and Roca-Riu et al. (2016) studied the feasibility of 
consolidation facilities. In particular, Estrada and Roca-Riu (2017) modeled delivery tours from 
consolidation facilities using CA, and then developed conditions in terms of customer density 
and consolidation facility capabilities that could generate profits for stakeholders when 
implementing a carrier-led consolidation strategy within the service region. In another study, 
Tozzi et al. (2013) adopted the above-mentioned tour length model to assess the time-
sensitivity of last-mile distribution in terms of additional tours needed under various delivery 
time-windows. The authors concluded that stricter constraints and congestion forces the carrier 
to operate at lower efficiency and with lower fleet utilization. For a complete overview of the 
advancements in CA models for transportation logistics, refer to source, Ansari et al. (2018).  
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As can be noted from the vast number of studies discussed in this section, there is a plethora of 
literature on different last-mile strategies and operations. However, the results can be 
ambiguous and case-study specific. To some extent, Estrada and Roca-Riu (2017) developed 
conditions in terms of customer density and consolidation facility capabilities which could 
generate profits to stakeholders when implementing a consolidation strategy. Similarly, Arnold 
et al. (2017) tested the efficacy of different last-mile distribution strategies (home delivery, 
collection point and cargo bikes) for Antwerp, Belgium. However, a holistic knowledge of the 
efficacy of different last-mile strategies is missing. Thus, the purpose of this work is to develop 
an analytical framework, starting from demand estimation, modeling last-mile operations using 
Continuous Approximation (CA), and developing a cost-based sustainability model, to assess 
last-mile sustainability of commonly deployed last-mile strategies. 
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II. Methodology 

Developing Demand for E-Commerce 

A sophisticated e-commerce demand model is fundamental to a comprehensive analytical 
framework for urban last-mile delivery. To develop this demand model, in Jaller and Pahwa 
(2020), the authors analyzed the individual shopping behaviors using the 2016 American Time 
Use Survey (ATUS). ATUS, a time use study funded by the US Bureau of Labor Statistics (BLS), 
logs the place and time of all daily activities for participating individuals, providing information 
on time spent on more than 400 detailed activities. Additionally, the data contains key 
demographic variables and weights assigned to each respondent (to account for under- or over-
representation), which can help discern the underlying behaviors. Hence, the authors modeled 
the shopping behaviors as a Multinomial Logit (MNL) model with the alternatives being: to not 
shop at all (No Shopping); to shop exclusively in-store (In-store); to shop exclusively online 
(Online); and to shop in-store as well as online (Both) (see choices in Figure 1). Table 1 shows 
the weighted MNL model, correcting for under/over representation, with the base choice being 
not shopping at all, i.e., No Shopping. The estimates represent the effect of the variables on the 
log of probability of choosing the alternative relative to the probability of the base alternative. 
Some statistically non-significant independent variables are in the model because they are 
included as part of interaction terms. 

 

Figure 1. Alternatives in the multinomial shopping choice logit model 

Now, to develop demand for e-commerce, the authors generated a synthetic population using 
the 2010 Census Data, replicating the inhabitants for each census tract for the two cities. This 
process reconstructed each individual attribute, such as gender, age, income level etc., 
assuming a Categorical distribution (Bernoulli/Multinoulli distribution). For each individual, the 
authors then implemented the behavioral multinomial choice model described above. From the 
resulting probabilities and subsequently assuming a Multinoulli distribution for channel choice, 
the study determined who would shop in-store, online, or engage in both channels. This entire 
process, starting from analysis of individual shopping behavior at the micro level, expands to 
develop the total e-commerce demand for a region. 
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Table 1. Shopping choice model 

Alternatives Frequency Adjusted Mc Fadden R2 

No shopping 0.593 Equally likely based 0.459 

Exclusively in-store 0.385 Market share based 0.010 

Exclusively online 0.012 Chi-square test w.r.t. market share model 

Both 0.010 Chi square value 325.5 (p-value = 0) 
  

Estimate, t-values and Significance (respectively) 

Variable In-store (4038) Online (121) Both (107) 

(intercept) -0.94 (-9.29) *** -4.93 (-9.52) *** -6.35 (-9.49) *** 

MSA>1mill 0.07 (0.61)   -0.70 (-1.10)   -0.27 (-0.46)   

Female 0.04 (0.50)   1.09 (2.52) * 1.40 (2.37) * 

Diff. in Mobility -0.64 (-5.30) *** -0.87† (-1.33)   -2.20† (-1.75) . 

Family Structure -0.33 (-1.89) . -0.43 (-0.44)   2.54 (3.01) ** 

Graduate 0.16 (2.66) ** -0.39 (-1.33)   -0.31 (-0.96)   

Gen X 0.17 (3.06) ** -0.06 (-0.21)   0.70 (2.23) * 

Baby Boomer 0.20 (3.25) ** 0.44 (1.57)   1.32 (4.04) *** 

Silent 0.27 (3.58) *** 0.16 (0.43)   0.82‡ (1.92) . 

Low -0.18 (-1.54)   0.65 (1.43)   0.92 (1.33)   

Lower Middle 0.01 (0.08)   0.23 (0.47)   1.05 (1.65) . 

Median -0.07 (-0.78)   -0.35 (-0.68)   0.34 (0.51)   

Middle Middle -0.03 (-0.31)   -1.13 (-1.37)   1.46 (2.58) ** 

High -0.20 (-1.80) . -0.37 (-0.66)   1.56 (2.69) ** 

Northeast 0.24 (2.32) * 0.46 (1.02)   -1.58 (-1.56)   

South 0.20 (2.62) ** 0.26 (0.74)   -0.24 (-0.62)   

West 0.10 (1.13)   -0.49 (-0.92)   0.46 (1.14)   
Fall 0.10 (2.06) * 0.78 (3.93) *** 0.29 (1.31)   

MSA>1mill * Female 0.01 (0.10)   -0.84 (-1.94) . 0.84 (1.88) . 

MSA>1mill * Fam. Str. -0.11 (-0.64)   1.77 (2.09) * -1.46 (-1.76) . 

MSA>1mill * Graduate 0.20 (2.31) * 0.84 (2.05) * 0.57 (1.34)   

MSA>1mill * Northeast -0.31 (-2.28) * -1.06‡ (-1.30)   1.66 (1.53)   

MSA>1mill * South -0.23 (-2.14) * 0.69 (1.20)   0.13 (0.24)   

MSA>1mill * West 0.02 (0.14)   1.57 (2.22) * -0.33 (-0.59)   

Female * Family Str. 0.69 (3.90) *** -0.31 (-0.35)   -1.24 (-1.44)   

Female * Low 0.18 (1.24)   -1.67† (-2.33) * -1.1‡ (-1.41)   

Female * Lower Middle 0.05 (0.38)   -0.58‡ (-0.91)   -2.07‡ (-2.50) * 

Female * Median 0.24 (2.03) * 0.54 (0.89)   -0.44 (-0.59)   

Female * Middle Middle 0.18 (1.31)   1.04‡ (1.13)   -1.52‡ (-2.21) * 

Female * High 0.27 (1.81) . 0.39 (0.54)   -2.04‡ (-2.73) ** 

Significant levels: 0% ‘***’ 0.1% ‘**’ 1% ‘*’ 5% ‘.’ 10% ‘ ’ 100% 

† Less than 5 observations‡ Less than 10 observations 

MSA>1mill implies that the individual lives in MSA with population greater than 1 million  

Family structure is the ratio of kids to adults in a household 
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Modeling Last-Mile Delivery Operations 

Facility location impacts in the VRP CA formulation 

Without loss of generality, a delivery tour begins from a facility located at 𝜌𝑥, 𝜌𝑦  relative to the 

center of the service region of size A, wherein the operator loads the packages onto the fleet. 
Each vehicle then travels the first leg of the tour, i.e., from the facility to the first customer in 
the tour, known as the long-haul (LH). 

Since in this study we focus on a one-to-many structure of distribution, i.e., one facility serving 
N customers, the vehicles complete the last-mile (LM) by visiting each customer in the tour, 
delivering their respective packages. Finally, the vehicles return to the facility completing a 
delivery tour. Since facility location impacts are central to the model formulation here, it is 
important to note that, as such, there is no “long-haul” for the facility located inside the service 
region. However, to keep consistency irrespective of the location of the facility, we call the first 
leg of the tour as the long-haul, wherein the first leg is the distance traveled by a vehicle from 
the facility to the first customer in the tour. This study therefore builds a generic delivery tour 
of length L serving C customers per tour as follows, 

𝐿 = 2𝜌  +
𝑘𝐶

√𝛿
  (2) 

where 𝜌 represents the long-haul distance, dependent on the facility location (𝜌𝑥 , 𝜌𝑦).  

This study bifurcates the location relative to the service region as “far” and “inside”. Consider 𝜌 
as the average distance of the facility from the customers. Hence, when a facility is located far 
from the service region it is essentially, 

𝜌𝑓𝑎𝑟 = √𝜌𝑥
2 + 𝜌𝑦

2 (3) 

If the facility is located inside the service area, the average distance from facility to customers is 
given as, 

𝜌𝑖𝑛𝑠𝑖𝑑𝑒 =
1

𝐴
∫ ∫ √(𝑥 − 𝜌𝑥)2 + (𝑦 − 𝜌𝑦)

2√𝐴/2

−√𝐴/2

√𝐴/2

−√𝐴/2
𝑑𝑦𝑑𝑥 (4) 

To develop a closed form equation, the authors regressed multiple values of 𝜌𝑖𝑛𝑠𝑖𝑑𝑒  with √𝜆𝐴. 
Here, 𝜆 is the expansion factor relative to the corner of the square shaped service region 
furthest from the facility, equivalent to the ratio of the shaded region (P’Q’R’S) to the area of 
the service region (PQRS) in Figure 2. The motivation behind this regression rests in the 
mathematical principle of homothecy, which is an affine transformation applied on space 
relative to the homothetic center (in this case, the furthest corner from the facility), although 
the exact concept does not apply here.  

Regressing for multiple values of 𝜌𝑖𝑛𝑠𝑖𝑑𝑒  against √𝜆𝐴, renders 𝜌𝑖𝑛𝑠𝑖𝑑𝑒 = 0.722√𝜆𝐴 (R2 = 0.996). 
Where 𝜆 is the expansion factor relative to the corner of the square shaped service region 
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furthest from the facility, equivalent to the ratio of the shaded region (P’Q’R’S) to the area of 
the service region (PQRS) in Figure 2, expressed as, 

𝜆 = (0.5 +
𝜌𝑥

√𝐴
)(0.5 +

𝜌𝑦

√𝐴
) (5) 

 
Figure 2. Visualizing expansion factor 

This render 𝜌𝑖𝑛𝑠𝑖𝑑𝑒  as 0.722√𝜆𝐴 (R2 = 0.996). Note, the error at the transition point, i.e., at the 
service region boundary, in assuming that the facility is located “far” rather than inside the 
service region is about 2%. This error can be further brought down by introducing a transitional 
space at the periphery of the service region, wherein a facility can be said to be near the service 
region (see Appendix). However, for the sake of simplicity, the study ignores this transitional 
space. Thus, on consolidating the model, one can express the long-haul distance as, 

 𝜌 = {
√𝜌𝑥

2 + 𝜌𝑦
2   if facility is located far 

0.722√𝜆𝐴   if facility is located inside
 (6) 

 Facility location =  {
Far if 𝜌𝑥 𝑜𝑟 𝜌𝑦 > 0.5√𝐴

Inside if 𝜌𝑥 𝑎𝑛𝑑 𝜌𝑦 ≤ 0.5√𝐴
 (7) 

Furthermore, assuming 𝑣𝐿𝐻 and 𝑣𝐿𝑀 as the long-haul and last-mile vehicle speeds, respectively, 
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the time taken to traverse the long-haul can then be given as, 

 𝑡𝐿𝐻 = {

𝜌−
√𝐴

2

𝑣𝐿𝐻
+

√𝐴

2

𝑣𝐿𝑀
   if facility is located far 

𝜌

𝑣𝐿𝑀
   if the facility is located inside

 (8) 

Hence, if the service time at customer and at the depot are 𝜏𝐶  and 𝜏𝐹 respectively, then the 
total tour travel time is, 

 𝑇 = 𝐶𝜏𝐹 + 2𝑡𝐿𝐻 + (
𝑘

𝑣𝐿𝑀√𝛿
+ 𝜏𝐶) 𝐶 (9) 

With this we have a comprehensive CA based model that can account for facility location 
impacts on the last-mile operations. In order to validate the model, the authors compared the 
estimates of this newly proposed model with various VRP instances from the literature. The 
model estimates the length of the VRP within a range of -6% to 13% of the calculated VRP 
length (Table 2). Not accounting for the impact of facility location on model formulation, as in 
the original formulation renders heavily underestimated tour lengths. Thus, the model 
developed here provides a robust platform to understand the impacts of, and tradeoffs 
between, facility location, fleet characteristics and time-windows on a one-to-many last-mile 
delivery structure. 

Table 2. Model comparison with VRP instances 

TSP instance Source 
Market  

size 
Service region  

size  
Depot  

location 
 VRP length 

Error 
Cited Estimated 

Experiment I  
 
(Daganzo, 

1984a)  

32 100 0, 0 64 61 -4.5% 

Experiment II 32 100 0, 0 96 90 -6.2% 

Experiment III 111 72.5 0, 0 174 168 -3.6% 

Experiment IV 111 72.5 0, 0 119 119 0.0% 

A-n32-k5  
 
 
(Augerat, 

1995) 
 
 

31 10,000 32, 26 784 887 13.2% 

A-n44-k6 43 10,000 36, 18 937 1036 10.6% 

A-n53-k7 42 10,000 26, 13 1,010 969 -4.1% 

A-n60-k9 59 10,000 23, 43 1,354 1,509 11.4% 

A-n69-k9 68 10,000 9, 6 1,159 1,217 5.0% 

A-n80-k10 79 10,000 42, 42 1,763 1,835 4.1% 

X-n209-k16 208 1000000 500, 500 30,656 31,325 2.2% 

X-n322-k28 321 1000000 0, 0 29,834 30,428 2.0% 

X-n429-k61 428 1000000 262, 54 65,843 69,023 4.8% 

X-n524-k154 523 1000000 191, 229 154,593 153,443 -0.7% 

X-n599-k92 (Uchoa et 
al., 2017) 

 

598 1000000 216, 333 108,489 116,536 7.4% 

X-n733-k159 732 1000000 0, 0 136,250 130,220 -4.4% 

X-n801-k40 800 1000000 500, 500 73,331 73,882 0.8% 

X-n895-k37 894 1000000 206, 363 53,946 58,747 8.9% 

X-n1001-k43 1000 1000000 498, 357 72,402 75,449 4.2% 
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Comprehensive last-mile delivery model 

At this point, the model developed above only supports one-to-many structure of last-mile 
operations, wherein the service region is served by one facility. This form of last-mile structure 
is evident for certain retailers serving LA, specifically Target and Sam’s Club, each of which has 
one e-commerce fulfillment center. Walmart similarly has two e-commerce fulfillment centers, 
both of which are located east of downtown LA, 12 miles apart. These companies also conduct 
e-fulfillment (deliveries or click-n-collect) from their stores under an omni-channel distribution 
strategy. Table 3 provides a comparison between the number of facilities for Amazon, Walmart, 
and Target in the study region. Moreover, it shows the different types of facilities for their 
distribution structure (stores are not included, except Whole Foods). Notably, the data provide 
insights about the hierarchy of the different facilities, and the differences in size and the 
relative location with respect to the customers. For Amazon, the Prime Hub Now, for instance, 
are smaller and locate very close to the customers to distribute in short time windows. 

Now, to expand from a single echelon structure to a multi-echelon structure, as is the case with 
Amazon in LA, this study develops an analytical model for a last-mile delivery service provider, 
serving 𝑁 customers in a service region of size 𝐴 in 𝑛𝑡 periods of time-window of length 𝑇𝑇𝑊 
from a depot located at a distance of 𝜌𝑥 and 𝜌𝑦  from the center of the service region. This 

depot—an e-commerce fulfillment—center is serviced from a larger regional fulfillment center 
located at a distance of 𝜌𝑥

′ , 𝜌𝑦
′  from the center of the service region. In addition, there are 𝑁𝐹  

randomly and uniformly distributed facilities within the service region, of which 𝑁𝑀𝐻  operate as 
micro-hubs (consolidation facilities or MHs) and 𝑁𝐶𝑃 are collection point pick-up facilities, 
serving a market share of 𝑝𝑀𝐻  and 𝑝𝐶𝑃, respectively. The vehicles departing from the 
distribution facility serve the 𝑁(1 − 𝑝𝑀𝐻 − 𝑝𝐶𝑃) customers directly and/or the other facilities 
(i.e., collection points, micro-hubs) as well, and the vehicles departing from micro-hubs serve 
the market, while customers drive to the collection-points to pick-up their packages. 

For the objectives of this work, the authors assume the case of an e-retailer distributing from a 
facility or multiple facilities with fixed, aggregated size acting as a single facility, irrespective of 
its location. This facility serves as a fulfillment center, with the associated logistics (e.g., 
inventory, transportation) and management costs. This facility locates “far” (under the previous 
considerations) from the urban core; based on Table 3, about 50 miles from Downtown LA. To 
serve the market under specific time-windows, the e-retailer evaluates the use of additional 
local distribution levels, such as an e-commerce fulfillment facility in combination with micro-
hubs and/or collection points, closer to the customers, as well as use of alternate fuel vehicles 
such as electric vehicles and cargo-bikes. Because this new facilities have a fast throughput, 
inventory costs could be ignored (i.e., already accounted for at the fulfillment center), and the 
analyses therefore concentrate on the costs of the facility, the transport fleet, the transport to 
fulfill this facility (inbound cost from the fulfillment center), and the last mile distribution costs. 
Moreover, the authors evaluate the impacts of time-windows in the logistics decisions. 
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Table 3. Logistics facilities around LA* 

For the purpose of the analysis, this study divides the distribution structure into three echelons 
(see Figure 3). The first echelon comprises of fulfillment trips between the regional fulfilment 
center and the e-commerce fulfilment center. The second echelon on the other hand pertains 
to the tours from this e-commerce fulfillment center to different locations (customers, micro-
hubs, collection points) in the service region. And finally, the third echelon encompasses tours 
from the micro-hubs to the customers, and the customers traveling to the collection points to 
pick up their packages. To begin with, we define generic variables for the model as, 𝑋𝑖 - variable 

𝑋 in 𝑖𝑡ℎ time-period; 𝑋𝑗 - variable 𝑋 for tour type 𝑗; 𝑋 
𝑘  - variable 𝑋 associated with vehicle type 

𝑘 and 𝑋𝑖
𝑗
 - variable 𝑋 in 𝑖𝑡ℎ time-period for tour type 𝑗. Below we develop tour length 𝐿𝑗  and 

tour time 𝑇𝑗 for each echelon with other essential variables explained as they come by. 

E-retailer/Type of facility 
 # of 

facilities 
Sq. Ft. 

Distance (mi) 
from DLA 

Description 

Amazon  
    

Inbound Cross Dock  2 684,650 57.1 International shipments 

Regional Sortation Center  1 514,600 56.1 Outbound shipments to USPS 

Fulfillment Center  14 862,269 52.1 Specific purpose shipments 

Delivery Stations  3 150,033 40.7 Outbound shipments to customers 

Prime Hub Now  3 51,400 16.8 Amazon Prime shipments 

Pantry and Fresh  1 121,000 4.2 Grocery shipments 

Whole Foods Retail  1 128,000 3.1 Whole food shipments 

Walmart      
General Merchandise DC  1 1,340,000 71.26 All-purpose shipments 

Perishables DC  1 520,000 52.48 Grocery and perishables shipments 

Import DC  4 687,550 40.01 International shipments 

E-commerce FC  2 919,750 39.58 E-commerce shipments 

Center Point DC  3 277,997 35.91 Domestic shipments 

Sam's Club DC  1 60,000 35.16 Sam's Club related shipments 

Target  
    

Import Warehouse  1 1,530,000 47.89 International shipments 

Food DC  1 500,000 47.25 Grocery and perishables shipments 

Regional DC  2 1,636,500 45.92 All-purpose shipments 

E-commerce FC  1 725,000 38.7 E-commerce shipments 

*Aggregated data from MWPVL International Inc. (n.d.), DC – Distribution Center, FC – Fulfillment center  
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Figure 3. Distribution structure 

1st echelon (Tour type I) 

The vehicles travel to-and-fro between the two facilities in the first echelon. Accordingly, the 
tour time can be established as service time at the two facilities plus the travel time. 

 𝐿𝐼 = 2√(𝜌𝑥
′ − 𝜌𝑥)2 + (𝜌𝑦

′ − 𝜌𝑦)2 (10) 

 𝑇𝐼 = 2𝐶𝑐
𝐼 𝜏𝐹 

𝑘 +
1

�̅�
{

 
𝐿𝐼

𝑣𝐿𝐻 
𝑘   if depot is outside the service region

𝐿𝐼

1+𝛼
(

1

𝑣𝐿𝑀 
𝑘 +

𝛼

𝑣𝐿𝐻 
𝑘 )   if depot is inside the service region

 (11) 

 𝛼 =
𝜌𝑥

′ −
√𝐴

2

√𝐴

2
−𝜌𝑥

  (12) 

Given 𝑊 working hours, the total number of such trips per vehicle are 

 𝑚𝐼 =
𝑊

𝑇𝐼 (13) 

Assuming that vehicles operate full-load, the fleet size can be given as 

 𝑓𝐼 =
𝑁

𝑉𝐶𝐼𝑚𝐼 (14) 

2nd echelon (Tour type II) 

Analogous to Daganzo’s tour length equation, the tour length in the 2nd echelon is sum of the 
long-haul distance, the last-mile distance which is proportional to the number of stops, here, 
number of micro-hubs, collection points and customers served (𝜃 customers are assumed to be 
consolidated per stop), and the detour taken for re-fueling/re-charging purpose (represented 
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by the last term). This detour length is proportional to the number of visits to the re-fueling/re-

charging station required, Ω𝑖
𝑗
, and inversely proportional to the root of number of such re-

fueling/re-charging facilities. Thus, as the number of re-charging facilities increase, the amount 
of detour reduces. Accordingly, then the tour time is established as the sum of service time at 

the facility, Λ𝑖
𝑗
, long-haul travel time, and the time spent in the last-mile traveling between the 

stops, serving the customers, loading/unloading at the facilities and re-fueling time. The long-
haul distance and the long-haul travel time here are established based on the formulation 
developed in the previous sub-section. The number of stops, vehicle tours and fleet size are 
determined based on the latter three equations. 

 𝐿𝑖
𝐼𝐼 = 2𝜌𝐼𝐼 +

𝑘(𝐶𝑀𝐻,𝑖+𝐶𝐶𝑃,𝑖+
𝐶𝐶,𝑖

𝐼𝐼

𝜃
)

√𝛿𝐹+
𝛿𝐶,𝑖

𝜃
(1−𝑝𝑀𝐻−𝑝𝐶𝑃)

+
𝜑𝐿,𝑖

𝐼𝐼 Ω𝑖
𝐼𝐼

√𝛿𝐶𝑆
 (15) 

𝑇𝑖
𝐼𝐼 = Λ𝑖

𝐼𝐼 + 2𝑡𝐿𝐻,𝑖
𝐼𝐼 +

𝑘(𝐶𝑀𝐻,𝑖+𝐶𝐶𝑃,𝑖+
𝐶𝐶,𝑖

𝐼𝐼

𝜃
)

𝑣𝐿𝑀 
𝑘 𝜑𝑖√𝛿𝐹+

𝛿𝐶,𝑖
𝜃

(1−𝑝𝑀𝐻−𝑝𝐶𝑃)

+ 𝐶𝐶,𝑖
𝐼𝐼 𝜏𝐶 

𝑘 + (
𝐶𝑀𝐻,𝑖𝑁𝑖𝑝𝑀𝐻

𝑁𝑀𝐻
+

𝐶𝐶𝑃,𝑖𝑁𝑖𝑝𝐶𝑃

𝑁𝐶𝑃
) 𝜏𝐹 

𝑘 +

𝜑𝐿,𝑖
𝐼𝐼 (

Ω𝑖
𝐼𝐼

𝑣𝐿𝑀 
𝑘 𝜑𝑖√𝛿𝐶𝑆

+ 𝑡𝑟𝑓𝑃,𝑖
𝐼𝐼 ) (16) 

 𝐶𝑀𝐻,𝑖𝑚𝑖
𝐼𝐼𝑓𝑖

𝐼𝐼 = 𝑁𝑀𝐻  (17) 

 𝐶𝐶𝑃,𝑖𝑚𝑖
𝐼𝐼𝑓𝑖

𝐼𝐼 = 𝑁𝑃𝐹  (18) 

 𝐶𝐶,𝑖 
𝐼𝐼 𝑚𝑖

𝐼𝐼𝑓𝑖
𝐼𝐼 = 𝑁𝑖(1 − 𝑝𝑀𝐻 − 𝑝𝐶𝑃)  (19) 

3rd echelon – Tours emanating from micro-hubs (Tour type III) 

Similar to the second echelon, the tour length for tours emanating from the micro-hubs is given 
by the sum of the long-haul distance, the last-mile distance and the detour length for re-
fueling/re-charging. The long-haul here has been established assuming it is the distance 
traveled by vehicles from the micro-hub to the nearest customer. Accordingly, the tour time is 
then established as the sum of facility service time, long-haul travel time, and the time spent 
traveling between the stops, serving the customers, and re-fueling time.  

 𝐿𝑖
𝐼𝐼𝐼 = 2𝜌𝐼𝐼𝐼 +

𝑘𝐶𝐶,𝑖
𝐼𝐼𝐼

𝜃

√
𝛿𝐶,𝑖

𝜃
𝑝𝐶𝐹

+
𝜑𝐿,𝑖

𝐼𝐼𝐼Ω𝑖
𝐼𝐼𝐼

√𝛿𝐶𝑆
 (20) 

 𝑇𝑖
𝐼𝐼𝐼 = Λ𝑖

𝐼𝐼𝐼 + 2𝑡𝐿𝐻
𝐼𝐼𝐼 + (

𝑘

𝜃

𝑣𝐿𝑀 
𝑘 𝜑𝑖√

𝛿𝐶,𝑖
𝜃

𝑝𝐶𝐹

+ 𝜏𝐶 
𝑘 ) 𝐶𝐶,𝑖

𝐼𝐼𝐼 + 𝜑𝐿,𝑖
𝐼𝐼𝐼 (

Ω𝑖
𝐼𝐼𝐼

𝑣𝐿𝑀𝜑𝑖 
𝑘 √𝛿𝐶𝑆

+ 𝑡𝑟𝑓𝑃,𝑖
𝐼𝐼𝐼 ) (21) 

 𝜌𝐼𝐼𝐼 = 0.361√
𝐴

𝑁𝑀𝐻
 (22) 
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 𝑡𝐿𝐻
𝐼𝐼𝐼 =

𝜌𝐼𝐼𝐼

𝑣𝐿𝑀𝜑𝑖 
𝑘   (23) 

 𝐶𝐶,𝑖
𝐼𝐼𝐼𝑚𝑖

𝐼𝐼𝐼𝑓𝑖
𝐼𝐼𝐼 = 𝑁𝑖𝑝𝑀𝐻  (24) 

3rd echelon – Personal vehicle trip to collection point pick-up (Tour type IV) 

It is assumed that a customer requests for collection point pickup at the nearest possible 
location. The corresponding travel is assumed to be a trip from customer’s residence to this 
pick-up location. 

 𝐿𝐼𝑉 = 2𝜌𝐼𝑉 (25) 

 𝜌𝐼𝑉 = 0.361√
𝐴

𝑁𝐶𝑃
 (26) 

 𝑓𝐼𝑉 = 𝑁𝑝𝐶𝑃 (27) 

The remainder of this section deals with vehicle re-charging and time spent at depot for tour 
type II and III. 

Since re-charging at the station renders an opportunity cost, it is assumed that the battery 
levels are only restored to the point that the vehicle can just return to the depot, and hence the 
re-charging time at the station is given as, 

 𝑡𝑟𝑓𝑃,𝑖
𝑗

=
𝐿𝑖

𝑗
− 𝑅 

𝑘

𝑅 𝑘 𝜏𝑟𝑓
𝐶𝑆

 
𝑘  (28) 

It is assumed that facilities have re-fueling/re-charging capabilities, and hence the re-fueling 
time at the facility is proportional to the ratio of deficit in the range relative to total distance 
traversed by a delivery vehicle and the vehicle range 

 𝑡𝑟𝑓𝑇
𝑗

=
(∑ 𝐿𝑖

𝑗
𝑚𝑖

𝑗
𝑖 − 𝑅 

𝑘 )

𝑅 
𝑘

𝜏𝑟𝑓
𝐹

 
𝑘  (29) 

As discussed previously, the frequency of visits to re-fueling/re-charging station is given by Ω𝑖
𝑗
 

which essentially depends on how large the delivery tour length is relative to the vehicle range, 
and hence is given as, 

 Ω𝑖
𝑗

= [
𝐿𝑖

𝑗
− 𝑅 

𝑘

𝑅 𝑘 ]
+

 (30) 

The service time at the facility, hence, must be enough to load/unload the packages and re-
fuel/re-charge as required. While the loading/unloading times depend on the number of 
customer served in the tour and the efficiency in performing the loading/unloading operations, 
the re-charging time would depend upon whether all the tours or a tour can be completed 

within the vehicle range. This is expressed in the binary variables 𝜑𝑇
𝑗
 and 𝜑𝐿,𝑖

𝑗
 respectively. Note, 

𝜑𝐿,𝑖
𝑗

= 1 is a stronger condition, and when 𝜑𝐿,𝑖
𝑗

= 1, 𝜑𝑇
𝑗

= 1 as well. If the vehicle range is 
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insufficient to carry out even a single tour, then the vehicle recharges full tank at the facility, 
however if the multiple but not all tours can be carried out under the vehicle range, then at the 
end of each tour vehicle recharges proportionally such that at the end of the day, the tank is 
empty. The authors acknowledge that the latter recharging strategy is an optimal one and often 
the last-mile operator may not know precise re-charging plan due to the inherent uncertainties 
in the last-mile. 

 Λ1,𝑖
𝑗

= max (𝐶𝑖
𝑗

𝜏𝐹 
𝑘 , 𝜑𝑇

𝑗 𝑡𝑟𝑓𝑇
𝑗

∑ 𝑚𝑖
𝑗

𝑖

) (31) 

 Λ2,𝑖
𝑗

= max(𝐶𝑖
𝑗

𝜏𝐹 
𝑘 , 𝜑𝐿,𝑖

𝑗
𝜏𝑟𝑓

𝐹
 

𝑘 ) (32) 

 Λ𝑖
𝑗

= (1 − 𝜑𝐿,𝑖
𝑗

)Λ1,𝑖
𝑗

+ 𝜑𝐿,𝑖
𝑗

Λ2,𝑖
𝑗

 (33) 

Wherein,  

 𝐶𝑖
𝑗

= {

𝐶𝑀𝐻,𝑖𝑁𝑖𝑝𝑀𝐻

𝑁𝑀𝐻
+

𝐶𝐶𝑃,𝑖𝑁𝑖𝑝𝐶𝑃

𝑁𝐶𝑃
+ 𝐶𝐶,𝑖

𝐼𝐼 , 𝑗 = 𝐼𝐼

𝐶𝐶,𝑖
𝐼𝐼𝐼 ,   𝑗 = 𝐼𝐼𝐼

 (34) 

 𝜑𝐿,𝑖
𝑗

= { 1   𝐿𝑖
𝑗

> 𝑅 
𝑘

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (35) 

 𝜑𝑇
𝑗

= {1   ∑ 𝐿𝑖
𝑗
𝑚𝑖

𝑗
𝑖 > 𝑅 

𝑘

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (36) 

∀   𝑖, 

∀  𝑗 ∈ 𝐼𝐼, 𝐼𝐼𝐼 

All the above tours and echelons are subject to capacity, time-window and working hours 
constraints express below, 

 𝐶𝐶,𝑖
𝑗

≤ 𝑉𝐶 
𝑘  (37) 

 𝑇𝑖
𝑗
𝑚𝑖

𝑗
− 𝑡𝐿𝐻

𝑗
≤ 𝑇𝑇𝑊 (38) 

 ∑ 𝑇𝑖
𝑗
𝑚𝑖

𝑗𝑛𝑡
𝑖=1 ≤ 𝑊 (39) 

 ∀   𝑖, 𝑗  

Cost-based Sustainability Assessment Model 

The total cost, TC, for providing the service considers facility costs (only building/land because 
equipment and construction is assumed constant regardless of location), fleet purchase costs, 
operational costs (except facility operations because they are assumed to remain constant for 
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the various locations), and the cost of externalities (GHGs and criteria pollutants). The 
operational costs encompass driver, maintenance, fuel and facility operational costs. Facility 
operational costs are assumed constant regardless of location, thus, ignored in the sub-sequent 
analyses.  

The objective of the e-retailer is to minimize total costs (Equation 40) subject to driver working 
hour constraints, as represented in Equation 39; tour capacity constraints represented by the 
number of customers served in a tour by Equation 37; customers served constraint–Equations 
17-19, 24 and 27; and the time-window constraints in Equation 38. The decision variables for 
the e-retailer are the fleet size - 𝑓𝑖, and the number of tours per vehicle - 𝑚𝑖, which this study 
assumes to be integer. In the case of no time-windows, the study assumes a single delivery 
period with a time-window as large as the available working hours 

 𝑇𝐶 = 𝐹𝑖𝑥𝑒𝑑 𝐶𝑜𝑠𝑡 + (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 + 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑖𝑡𝑖𝑒𝑠 𝐶𝑜𝑠𝑡).
𝑑(1−(1+𝑟)−𝑌)

𝑟
  (40) 

 𝐹𝑖𝑥𝑒𝑑 𝐶𝑜𝑠𝑡 = 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡 + 𝐹𝑙𝑒𝑒𝑡 𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 𝐶𝑜𝑠𝑡 (41) 

 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡 = ∑ 𝐹𝑓𝑐
𝑗

𝑗  (42) 

 𝐹𝑙𝑒𝑒𝑡 𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 𝐶𝑜𝑠𝑡 = ∑ 𝑃𝐶 
𝑘 𝑓𝑗

𝑗  (43) 

 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝐷𝑟𝑖𝑣𝑒𝑟 𝐶𝑜𝑠𝑡 + 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐶𝑜𝑠𝑡 + 𝐹𝑢𝑒𝑙 𝐶𝑜𝑠𝑡 +
𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 (44) 

 𝐷𝑟𝑖𝑣𝑒𝑟 𝐶𝑜𝑠𝑡 = ∑ ∑ 𝑇𝑖
𝑗
𝑚𝑖

𝑗
𝑓𝑖

𝑗
𝐶𝑑 

𝑘
𝑖𝑗,𝑗≠𝐼𝑉  (45) 

 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐶𝑜𝑠𝑡 = ∑ ∑ 𝐿𝑖
𝑗
𝑚𝑖

𝑗
𝑓𝑖

𝑗
𝐶𝑚 

𝑘
𝑖𝑗,𝑗≠𝐼𝑉  (46) 

 𝐹𝑢𝑒𝑙 𝐶𝑜𝑠𝑡 = ∑ ∑ 𝐿𝑖
𝑗
𝑚𝑖

𝑗
𝑓𝑖

𝑗
𝑟𝑓 

𝑘 𝐶𝑓 
𝑘

𝑖𝑗,𝑗≠𝐼𝑉  (47) 

 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝐹𝑜𝑐 (48) 

 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑖𝑡𝑖𝑒𝑠 𝐶𝑜𝑠𝑡 = ∑ ∑ 𝐿𝑖
𝑗
𝑚𝑖

𝑗
𝑓𝑖

𝑗(∑ 𝑟𝑒 
𝑘 𝐶𝑒𝑒 )𝑖𝑗  (49) 

The notations for the above developed last-mile delivery model and the cost model are 
summarized below. 

Sets 
𝑒:   Pollutant type  
𝑖:  Time-period 
𝑗:  Tour type (I, II, III, IV) 
𝑘:  Vehicle type 

Objective function 
 𝑇𝐶: Total cost 
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Decision Variables 

𝑚𝑖
𝑗
:  Number of tours per vehicle in time period 𝑖 for tour type 𝑗 

𝑓𝑖
𝑗
:  Fleet size in time period 𝑖 for tour type 𝑗 

Parameters 
𝑁:  Number of customers to be served in a day 
𝑁𝑀𝐻:  Number of micro-hubs 
𝑁𝐶𝑃:  Number of collection points 
𝐴:  Size of the service region 
𝜌𝑥 , 𝜌𝑦:  Facility location (e-commerce fulfillment facility) 

𝜌𝑥
′ , 𝜌𝑦

′ :  Location of the regional fulfillment center 

𝜃:  Number of customers served at one vehicle stop 
𝑝𝑀𝐻:   Share of customers served through micro-hubs 
𝑝𝐶𝑃:  Share of customers that collect the packages at a collection point 
𝑁𝑖:   Number of customers to be served in time-period 𝑖  
𝜑𝑖:  Congestion factor in time-period 𝑖 

𝐹𝑓𝑐
𝑗

:  Facility fixed cost for facility responsible for tour type 𝑗 

𝐹𝑜𝑐:  Facility operation cost 

𝑃𝐶 
𝑘 :  Vehicle purchase cost of vehicle type 𝑘 

𝑉𝐶 
𝑘 :  Vehicle capacity of vehicle type 𝑘 

𝑅 
𝑘 :  Range of vehicle of vehicle type 𝑘 

𝑣𝐿𝐻 
𝑘 :  Free flow vehicle speed in the long-haul for vehicle type 𝑘 

𝑣𝐿𝑀 
𝑘 :  Free flow vehicle speed in the last-mile for vehicle type 𝑘 

𝜏𝐶 
𝑘 :    Service time per customer at a stop for vehicle type 𝑘 

𝜏𝐹 
𝑘 :  Service time at facility in per customer basis for vehicle type 𝑘 

𝑟𝑓 
𝑘 :  Rate of fuel consumption of vehicle type 𝑘 

𝑟𝑒 
𝑘 :  Rate of emissions of vehicle type 𝑘 

𝐶𝑑 
𝑘 :   Driver cost for vehicle type 𝑘 

𝐶𝑚 
𝑘 :  Maintenance cost of vehicle type 𝑘 

𝐶𝑓 
𝑘 :  Fuel cost for vehicle type 𝑘 

𝐶𝑒:  Emission cost of pollutant e 
𝑛𝑡:  Number of time-periods 
𝑌:  Number of years of operation 
𝑑:  Number of working days in a week 
𝑟:  Rate of return 

𝑊:  Working hours in a day 

Variables 
𝜆:  Expansion factor 
𝑇𝑇𝑊:  Length of time-period (time-window) 
𝐶𝐶,𝑖:  Customers served per tour in time-period 𝑖 
𝐶𝑀𝐻,𝑖:  Number of micro-hubs visited per tour in time-period 𝑖 
𝐶𝐶𝑃,𝑖:  Number of collection points visited per tour in time-period 𝑖 
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𝛿𝐶,𝑖:  Customer density in time-period 𝑖 
𝛿𝐹:  Facility density (micro-hubs and collection points) 
𝛿𝐶𝑆:  Density of charging stations 

𝜌𝑗:  Length of the long-haul for tour type 𝑗 

𝑓𝑗 :  Total fleet size for tour type 𝑗 

Λ𝑖
𝑗
:  Time spent at the facility loading/unloading or recharging 

𝑡𝐿𝐻,𝑖
𝑗

:  Long-haul travel time in time-period 𝑖 for tour type 𝑗 

𝑡𝑟𝑓𝑃,𝑖
𝑗

:  Time spent re-charging at a charging station in a delivery tour 

𝑡𝑟𝑓𝑇
𝑗

:  Total time spent charging at the facility during the day 

Ω𝑖
𝑗
:  Frequency of visits to the charging station in a delivery tour 

𝜑𝐿,𝑖
𝑗

∶  Binary variable (= 1 if delivery tour length exceeds vehicle range) 

𝜑𝑇,𝑖
𝑗

∶  Binary variable (= 1 if total vehicle tour length exceeds vehicle range) 

𝐿𝑖
𝑗
:  Tour length (distance) in time-period 𝑖 for tour type 𝑗 

𝑇𝑖
𝑗
:  Tour length (time) in time-period 𝑖 for tour type 𝑗 
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III. Case Study 

The authors analyzed the potential e-retailer’s last mile service in Southern California, 
specifically for a defined area in the city of Los Angeles. Using the behavioral shopping models 
developed in Jaller and Pahwa (2020), and discussed above, the authors estimate total demand 
for e-commerce, in a typical day, at the census tract level within the study area. Although this 
study does not model a particular e-retailer or operator, the work analyzes various types of 
services following the operations of a company such as Amazon. This is because Amazon is 
responsible for almost 50% of the demand (47% market share) (Clement, 2019b), and has been 
offering shorter time-windows, with other retailers poised to follow. In particular, this work 
tests the efficacy for an e-retailer providing door-to-door service with a) diesel fleet, b) electric 
fleet and c) crowd-sourced fleet. The study also examines the sustainability of an additional 
echelon/level of facility in the form of micro-hubs, which are essentially consolidation facilities, 
and collection points where customers can pick their packages from. Additionally, the study 
assumes a consolidation of 3 deliveries per vehicle stop, which are randomly and uniformly 
distributed in a service region centered in downtown Los Angeles (Figure 4). The service 
operates during a 9-hr workday, and to scale up the costs, the work considers a time horizon of 
10 years of operation, with 330 working days in a year.  

To understand the fixed and operational cost trade-off, the authors developed a facility 
(building) cost model (Figure 4) using the Co-Star sales and lease 2018 data for industrial (e.g., 
warehouses, manufacturing) facilities in Southern California (Jaller et al., 2020). The light blue 
circles in Figure 4 are actual observations for warehouse sales plotted as sales prices against 
location of depot relative to downtown Los Angeles, while the dark blue dashed line is the best 
fit for these observations. This model estimates the square footage price as a function of 
distance from Downtown LA. 

For the analyses about the impacts of time-windows, the authors developed four scenarios: no 
time-window (𝑛𝑡 = 1, 𝑇𝑇𝑊 = 𝑊 = 9); three 3-hr long time-windows (one for morning, 
afternoon and evening each) (𝑛𝑡 = 3, 𝑇𝑇𝑊 = 3); six 1.5-hr long time-windows (early/late 
morning, afternoon and evening)( 𝑛𝑡 = 6, 𝑇𝑇𝑊 = 1.5); and nine 1-hr long time-windows (𝑛𝑡 =
9, 𝑇𝑇𝑊 = 1). For illustration purposes, the study assumes a demand distribution of 0.19, 0.36 
and 0.45 (UPS, 2018), and congestion factors (relative speeds) of 0.86, 1, and 0.82, developed 
using HERE real-time speed data (HERE, 2019), for the morning, afternoon and evening time-
periods, respectively. The study assumes static and known demand (no real-time demand 
considered), and predefined time-windows (e.g., e-grocery deliveries with customer chosen 
time-windows). Table 4, Table 5, Table 6, Table 7 and Table 8 shows the various parameters and 
summarizes the assumptions discussed above. Note, only tailpipe emissions are considered for 
vehicle emission rates in Table 6. The authors estimate a per-day per-customer cost metric to 
facilitate the comparison of results. Further, the study conducts sensitivity (for some of the 
parameters) and breakeven analyses comparing location and activity. The data for the analyses 
and the optimization tool is available on Dryad: https://doi.org/10.25338/B82K67.  

https://doi.org/10.25338/B82K67
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Figure 4. Service region for Los Angeles, centered in Downtown LA. Note: Light blue markers 
represent the price per sq. ft. for transactions in 2018. 

Table 4. Service region and operator characteristics 

Service region characteristics   

Market size   147849 customers (49283 delivery stops) 

Service region size √𝐴 21.8 mi 

Operator characteristics   

Warehouse purchase price per sq. ft. a 𝐹𝑓𝑐  $356.37(𝜌𝑥
2 + 𝜌𝑦

2)
−0.115

  

Working hours in a day 𝑊 9 hours 
Days of working in a year 𝑑 330 days 
Time horizon of operation  𝑌 10 years 
a CoStar (2019)     
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Table 5. Time-window characteristics 

Table 6. Vehicle characteristics 

Time-window 
characteristics 

 

Market share a  
No time-window 1 
Three 3-hr long time-
window 

0.19, 0.36, 0.45 morning, afternoon, evening respectively 

Six 1.5-hr long time-
windows 

0.095, 0.18, 0.225 early/ late morning, afternoon and evening 
respectively 

Nine 1-hr long time-
window 

0.0633, 0.12, 0.15 in the first, next and the last three hours 

Congestion b  

No time-window 0.893 
Three 3-hr long time-
window 

0.86, 1, 0.82 morning, afternoon and evening respectively 

Six 1.5-hr long time-
windows 

0.86, 1, 0.82 early/late morning, afternoon and evening respectively 

Nine 1-hr long time-
window 

0.86, 1, 0.82 in the first, next and last three hours respectively 

a UPS (2018)  b HERE (2019)  

Vehicle characteristics  Class 8 
DT 

Class 5 
DT 

Class 5 
ET 

ECB LDT PC 

Purchase cost a($)  𝑃𝐶 
𝑘  120k 80k 150k* 6.5k* - - 

Vehicle capacity (customers per tour)  𝑉𝐶 
𝑘  1800 360  360 30 30 - 

Long-haul speed (mph)  𝑣𝐿𝐻 
𝑘  50 50 50 10 60 60 

Last-mile speed (mph)  𝑣𝐿𝑀 
𝑘  15 15 15 10 25 25 

Service time at customer (mins)  𝜏𝑠
𝐶

 
𝑘  - 1 1 0.5 0.5 - 

Service time at facility (s per customer) 𝜏𝑠
𝐷

 
𝑘  2 18 18 18 30 - 

Driver cost b ($/hour)  𝐶𝑑 
𝑘  35 35 35 30 20 - 

Vehicle maintenance cost b ($/mi)  𝐶𝑚 
𝑘  0.19 0.20 0.15 0.02 - - 

Fuel cost c ($/gal, $/kWh)  𝐶𝑓 
𝑘  3.86 3.86 0.12 0.12 - - 

Fuel consumption rate a (mpg, mpkWh)  𝑟𝑓 
𝑘  0.125 0.1 0.8 0.29 - - 

Range (mi)  𝑅 
𝑘  - - 150 30 - - 

CO2 emission rate d (g/mi)  𝑟𝐶𝑂2 
𝑘  1592 1049.38 0 0 386.1 303 

CO emission rate d (g/mi)  𝑟𝐶𝑂 
𝑘  0.81 0.77 0 0 1.77 1.09 

NOx emission rate d (g/mi)   𝑟𝑁𝑂𝑥 
𝑘  5.55 4.1  0 0 0.17 0.08 

PM emission rate d  𝑟𝑃𝑀 
𝑘  0.09 0.132 0 0 0.0026 0.002 

DT – Diesel Truck, ET – Electric Truck, ECB – Electric Cargo Bike, LDT – Light Duty Truck (crowd-sourcing vehicle),  
PC – Passenger Car  
a Jaller et al. (2018)  b Caltrans (2016)  c AAA (2019)  d California Air Resource Board (2018) *Charging infrastructure 
cost to be added over it 
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Table 7. Emission costs 

Emissions cost ($/kg)   
CO2 cost a 𝐶𝐶𝑂2

 0.1996 

CO cost b 𝐶𝐶𝑂 0.1763 

NOx cost b 𝐶𝑁𝑂𝑥
 70.43 

PM cost b 𝐶𝑃𝑀 576.84 
a California Air Resources Board (CARB) (2008) 
b Caltrans (2016) 

Table 8. Charging infrastructure cost 

Charging Levels Power (kW) Price ($) 

Level 1 1.44 1000 
Level 2 7.2 3000 
Level 3 (DC) 150 20000 
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IV. Empirical Results 

This section discusses the results of the model implementation in the study region. The 
analyses focus on cost-trade off, impact of time-windows, efficacy of different last-mile 
strategies and emissions.  

 

Figure 5. The cost trade-offs and impacts of time-windows 

The Cost Trade-offs 

In this particular sub-section, the study discusses the impacts of time-windows and facility 
location, in particular on the cost trade-offs for door-to-door delivery operated with a diesel 
fleet. Figure 5 illustrates the impact of facility location on fixed, operational, externality and 
total costs. Recalling that the fixed costs includes both facility and fleet ownership costs, and 
that while the former decreases, the latter increases as the facility locates further from the 
center of the market region. The results show evidence of the effect of time-windows in last-
mile operations. Shorter time-windows reduce load utilization factors for the fleet (shown later 
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in this section) which increases the fleet size, and in-turn the transportation costs. Therefore, to 
contend with higher transportation costs, the e-retailer requires locating the distribution facility 
closer to the market, trading off transportation costs for facility location cost. 

For the study market, when there are no time-windows constraints, the e-retailer could 
optimally locate at the edge of the service region. As the time-windows get shorter, there is a 
need to be even closer to downtown LA (which is assumed to be the center of the service 
region), with total costs increasing (from the no time-windows case) by 47%, 133% and 297% 
for the 3hr, 1.5hr and 1hr time-windows, respectively. The impact of time-windows, in fact, 
extends beyond just the increase in costs. The study found no feasible solution for facilities 
locating beyond 32 miles from downtown LA for the 1.5hr time-window, and beyond 10 miles 
from city center for the 1hr time-window cases. This is because, under the speeds and service 
time assumptions, the facility could not serve the region without violating the time-window 
constraints. These results thus demonstrate the exponential effects of temporal restrictions on 
last-mile delivery. 

 

Figure 6. E-retailer last-mile structure comparisons – Total cost per customer 
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Service comparisons 

One of the main objectives of this paper is to understand the efficacy of different last-mile 
strategies, namely, door-to-door delivery with diesel (D2D - Diesel), electric (D2D - electric) and 
crowd-sourced fleet (D2D - Crowdsourced), micro-hub based delivery in combination with 
cargo-bikes (MH - Cargo bikes), and collection point based pickup (CP). For the latter two 
scenarios, the study assumes 15 such facilities to be located within the service region, and that 
all of the market is served through these facilities (𝑁𝑀𝐻 = 15, 𝑝𝑀𝐻 = 1 and 𝑁𝐶𝑃 = 15, 𝑝𝐶𝑃 =
1 respectively). Of particular interest are the impacts on total and emission costs. From Figure 
6, one can notice that as time-windows get stricter, micro-hubs based delivery and collection 
point based pick-up outperform conventional truck based delivery, be it diesel or electric fleet. 
Amongst the two, while electric fleet has a high procurement cost, the lower operating costs 
over the period of 10 years of operation renders operational as well as external benefits. Back 
to collection points, as the responsibility of deliveries is transferred from e-retailer to the 
customer traveling to pick-up at the collection point, the operational cost reduces at the 
expense of higher emission cost (Figure 7). 

 

Figure 7. E-retailer last-mile structure comparisons – Emission cost per customer 
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On the other hand, the crowd-sourced delivery, due to its lower cost services (lower time-based 
fee, and no or lower upfront cost), renders significant reductions in shipping costs to the 
retailer, while at the same time since deliveries are consolidated, emissions could reduce. And 
with stricter temporal constraints, the difference in operating with one’s own fleet and crowd-
sourcing the delivery grows even further. For instance, at the optimal facility locations, the 
shipping costs by outsourcing the deliveries reduce by 30%, 50%, 65% and 71% as time-
windows get smaller. As discussed above, time-windows lead to poor load utilization, therefore 
requiring a larger fleet size. However, when the deliveries are outsourced, the retailer does not 
have to purchase more vehicles, but has to hire more crowd-sourced drivers. These benefits 
remain, though slightly reduced, even when the company assumes an upfront cost (which is 
smaller than the vehicle purchase cost). However, the business may increase its operational risk 
if it relies solely on crowd-sourced drivers; thus, it may need to incentivize driver supply at an 
increased cost (similar to how ride-hailing services do). 

Sensitivity Analyses 

To explore beyond the results from the case study, the authors performed sensitivity analyses. 
In particular, this study looks at the market size effects and the impacts from improved/reduced 
service efficiency on the delivery operations (D2D - Diesel). The market size effects pertain to 
impacts from altering the size of the service region and/or number of customers served, while 
service efficiency pertains to vehicle speed (in the last-mile) and service time per customer. The 
following figures demonstrate these effects on total cost (Figure 8), emission cost (Figure 9), 
fleet size (Figure 10), at the optimal, and the optimal facility location (Figure 11) under 3-hr 
time-window.  

As one would expect, a larger customer base helps consolidating operations thus resulting in 
lower costs per customer as also evident from Figure 8. But because the market is already well 
consolidated an increase of 33% in customer base from 60k to 80k results only in a minor 
reduction of ~3% in per customer costs. Given a fixed customer base, changes in the size of the 
service region affects the inter-stop distance. Thus, when the service region is too large for a 
facility to serve, opening up another facility and in turn dividing the responsibilities of service 
can be useful for the operator. Overall, the market size effects here demonstrate that a sparsely 
populated service region results in higher costs compared to a densely populated service 
region. However, it is important to note that the iso-cost contour curves do not overlap with 
the iso-density contour curves (straight lines emanating from 0,0 but not mapped in the figure). 
Some iso-density curves are steeper while others are flatter compared to the iso-cost curves. 
This observation thus bolsters the idea of opening up additional facilities and dividing the 
service region into smaller regions to reduce costs, specifically when the iso-cost curves are 
steeper than iso-density curves.  

The service efficiency on the other hand has more dramatic effect on costs, particularly for 
service time. An increment in service time per customer by 3 times from 1 min to 3 mins results 
in about 2-3 times increase in costs per customer. While vehicle speeds do not have as 
significant affect when the service time is small, the contour lines tend to flatten as the service 
time increases, signifying the effects of congestion. Particularly when the service time is 3 mins, 
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a 3x reduction in vehicle speed results in ~1.6 times higher costs per customer. This thus 
reinforces the arguments made earlier that temporal restrictions have significant impacts on 
last-mile delivery efficacy. In addition to that, these results bode well for low-volume low-cost 
vehicles such as cargo bikes or vehicles deployed for crowd-sourced delivery. Last-mile 
deliveries into dense areas such as downtown can be susceptible to congestion and access 
unavailability (resulting in increased service time). Such vehicles can flourish under such 
delivery conditions, due to its ease of access given that there is appropriate infrastructure in 
place. This is true especially when time-windows are also imposed as any disadvantage due to a 
lower capacity is mitigated by lower consolidation levels forced by temporal restrictions in the 
first place. Similar conclusions can be drawn for emission costs as well.  

 

Figure 8. Impact of market size and last-mile efficiency on total cost per customer 

 

Figure 9. Impact of market size and last-mile efficiency on emission cost per customer 
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For any last-mile distribution, the number of vehicles that need to be deployed would depend 
upon the efficiency of the vehicle; its volume capacity, ease of access and parking (which affects 
customer service time), vehicle speed, and the size of the market. The relatively flat contour 
curves in the first of the two graphs in Figure 10 demonstrates the significant impact of market 
size, in particular the impact of customer base of the e-retailer on the size of the fleet. While 
the relatively steep contour curves in the latter of the two graphs show the impact of service 
time on the same. The fact that vehicle speed is insignificant when making vehicle procurement 
decision strengthens the case for cargo-bikes but under the delivery conditions expressed 
above. Yet again temporal effects are more dramatic than market size effects. 

 

Figure 10. Impact of market size and last-mile efficiency on fleet size 

 

Figure 11. Impact of market size and last-mile efficiency on optimal facility location 
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Next, the study looks at the market size effects and service efficiency impacts on the optimal 
location of the facility (Figure 12). In the former of the graphs, one can observe a hill under 
densely populated conditions and a trench under sparsely populated conditions. Although the 
difference between the apex and the nadir is barely a mile. More dramatic impacts can be 
observed the second graph that reveals a plateau which abruptly falls into a valley as service 
efficiency reduces. The plateau region is of particular interest as it shows that beyond a certain 
threshold of service efficiency any additional improvements cannot push the facility further 
away from the service region as other factors possibly transportation cost come into play. In 
addition, throughout the spectrum of speed and service time values, the optimal facility 
location remains inside the service region. This will significantly change and so will all the 
sensitivity analysis done prior as time-windows is relaxed or further restricted. Again, under 
specific conditions (short time-windows and appropriate infrastructure) deploying cargo bikes 
or crowd-sourcing deliveries can help locating further away from the service region, and in turn 
reducing fixed, operational as well as emission cost. In the text above, the study assesses the 
service efficiency effects for 3-hr time-window. The results in the Appendix (Figure 15 and 
Figure 16) extend that analysis for delivery under no time-window and 1-hr time-window, the 
two extremes. While the results here are not too different from the ones presented in the text, 
the results are of particular interest as one can observe a continuous and gradual variation in 
cost and location from one extreme of no time-window, to the other extreme of 1-hr time 
window. 

 

Figure 12. Long term effects on door-to-door service with electric fleet 

For electric vehicle based last-mile delivery, the study analyses the short-term and long-term 
effects, i.e., in the short-term the facility location is fixed at 48 miles from downtown LA, while 
in the long-term e-retailer is allowed to re-optimize to locate at the optimal location that 
results in least total cost. These effects pertain to the impacts from availability (density) of 
charging infrastructure and vehicle capability (range). The results are particularly interesting as 
one can draw two key inferences from here. Firstly, it is evident that density of chargers does 
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not have a significant impact on last-mile operations if the facility can re-locate closer to the 
customers, wherein the vehicle range would suffice for a delivery tour (Figure 12). However, if 
the facility cannot relocate at all or sufficiently close to the customers, vehicle range (or rather 
insufficient vehicle range) can cause disruption in last-mile operations, as delivery vehicles need 
to de-tour and re-charge at a charging station (Figure 13).  

 

Figure 13. Short term effects on door-to-door service with electric fleet 

Lastly, the study looks at the sensitivity impacts for micro-hubs and collection point based last-
mile delivery (Figure 14). The sensitivity effects pertain to the impacts from share of cargo that 
is processed through micro-hubs or collection points and the number of such facilities. The 
results for these two different delivery structures show an opposite trend. While on one hand, 
total costs from an additional echelon of consolidation are unaffected by the share of packages 
processed through micro-hubs but by the number of such facilities, total costs for collection 
point-based pick-up are sensitive to the share and not so much to the number of facilities. For 
the former, the trend observed can be ascribed to the reduction in transportation costs as more 
facilities are opened leading to shorter delivery tour lengths, while for the latter, as the 
responsibility for delivery in outsourced to the customer itself, the transportation costs reduce, 
and hence number of facilities has no role to play here. An exact opposite trend is observed for 
emission costs, however. Since the micro-hubs work in combination with cargo-bikes, a larger 
share of packages delivered through cargo-bikes results in reduced emissions, thus number of 
facilities does not have a role to play here. On the other hand, as more collection points open 
up, customers travel less, thus pollute less, while the share of customers has relatively muted 
effect. As far as the optimal location of the facility, the e-commerce fulfillment center is 
concerned, the higher the number of customers serviced through the collection point or micro-
hubs, the further away the facility can relocate as the trucks departing from this facility have 
lesser and lesser customers to serve. 
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Figure 14. Impact of micro-hubs and collection points 
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V. Discussion and Conclusions 

The rise of e-commerce and the consequent need to redirect freight towards sustainability has 
renewed academic interest in last-mile operations. Moreover, the e-commerce market has 
become ever more demanding, forcing e-retailers to make attractive offers to customers, such 
as free shipping, free returns, reliability, and traceability, among others. Retailers are offering 
shorter delivery time-windows (e.g., same day, two-hour, one-hour), and in so doing, increasing 
customer expectations. 

It could be argued that e-commerce delivery services are logistically efficient and could further 
be made environmentally sustainable with the ability to consolidate and replace inefficient 
shopping trips. However, the results of this study show that externality costs increase 
exponentially as shorter delivery time-windows are introduced. While companies could 
mitigate increased operational costs by locating closer to their customers (consistent with other 
facility location studies) (Jahangiriesmaili et al., 2017), delivery time-windows still increase the 
overall rate of emissions generated to serve the market. Technically, the shorter the time-
windows, the lower the possible consolidation level, resulting in more activity (miles traveled), 
more resources used to deliver a fixed number of shipments, and more externalities produced. 
There are strategies, such as using cleaner vehicles, alternative delivery modes, or demand 
consolidation at delivery points, which could mitigate some of these impacts.  

In fact, the study found significant benefits from out-sourcing delivery, either in the form of 
customers picking up their packages at the collection points or by crowd-sourcing deliveries. In 
particular, the results show the benefits (reduced operating costs) of out-sourcing delivery, 
though these benefits may be realized at the expense of social costs in the form of additional 
externalities. However, under specific settings out-sourcing deliveries can operate sustainably, 
as also discussed by Odongo (2018) for the case of crowd-sourced deliveries. In particular, the 
study found that crowd-sourcing deliveries can produce significant gains for the e-retailer and 
at the same time reduce externalities when temporal constraints are binding, and capacity 
constraints are not. Although strict working conditions as is the case with short time-windows 
may dissuade crowd-shippers in taking up delivery responsibilities, thus reducing driver supply 
(Ermagun et al., 2019). While this study did not evaluate secondary and further impacts of using 
crowd-sourcing services, the results indicate the potential for their increased use. Future 
research should study the potential sustainability impacts of increased use of crowd-sourcing 
delivery services. The passenger counterpart of such services are now a few years into the 
market with positive and negative effects being seen in transportation, and in such areas as 
labor, safety, and economic development. In addition, this study, argues for the use of cargo 
bikes. The results show that delivery to dense localities under short time-windows can benefit 
from deploying cargo-bikes especially with a bike infrastructure in place. This is consistent with 
results from other studies, such as Tipagornwong and Figliozzi (2014), who analyzed the 
competitiveness of cargo bikes with traditional diesel trucks. All the above discussed strategies 
in a sense try to remediate the consequences of what is the fundamental current challenge in 
distribution, a trend towards almost instant deliveries. Thus, it is imperative to identify the type 
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of intervention‒supply- or demand-driven, or regulatory policy—that will internalize the full 
costs resulting from these services to the company, the consumer, or both. 

The results also highlight the importance of considering these freight trends in planning efforts, 
especially those related to land use. For instance, providing land uses for the location of these 
facilities near customers will reduce emissions and costs; albeit the increased freight activity 
may generate negative impacts locally. These could bring along unintended consequences 
considering that the ability to locate closer to the customer may foster even faster deliveries, 
which are clearly not sustainable. An important consideration here is the fact that the 
traditional system and planning processes have been observing an opposite trend in the form of 
logistics sprawl, where larger facilities have moved to the outskirts of cities. These facilities, as 
part of regular retail distribution networks (through retail stores) traditionally sent consolidated 
shipments to the stores and served other markets, thus having the ability to be located further 
away, and benefiting from lower facility costs. Today, the retail landscape is changing and 
delivering goods through multiple channels, many with the consumer as the final destination. 
All of these changes require fundamental reconsiderations of traditional logistics problems (for 
researchers) and decisions (for carriers and other logistics agents). The companies are still 
adapting, whereas the planning process is lagging; this is even more critical at the local level.  
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VII. Data Management 

Products of Research  

2016 American Time Use Survey – This survey is conducted by the United States Department of 
Labor, Bureau of Labor Statistics. The ATUS measures the amount of time people spend doing 
various activities, such as paid work, childcare, volunteering, and socializing. The team used the 
data to estimate a number of shopping behavior econometric models.  

Socio-demographic data – The team used the publicly available data from the U.S. Census 
Bureau. The team used the data to generate synthetic populations for the empirical analyses, 
and during model development. 

Co-Star – Co-Star is a real estate manager. The team modeled spatial variations for warehouse 
sales price using the warehouse purchase data from Co-Star. The team only used the data to 
generate the case study information. 

Analytical tool – This file contains essential information to use the Last-Mile Analytical Tool. 
This tool models last-mile delivery and different city logistics measures in the context of e-
commerce delivery. 

Based on the structure of last-mile distribution (described above) we have four types of tours: 

Tour Type I: Inbound movement between Fulfillment center to E-commerce Fulfillment 
Facility 
Tour Type II: Vehicle movement between E-commerce Fulfillment Center and service region 
Tour Type III: Vehicle movement between micro-hubs and customers 
Tour Type IV: Vehicle movement between customers and collection point 

Data Format and Content  

The project uses the following public datasets: 

The 2016 American Time Use Survey (ATUS). The team uploaded to the Dryad system the 
files used saved in Comma-delimited (csv) format. Some variables have been removed to 
comply with legal and ethical guidelines. However, the entire ATUS data can be accessed 
from https://www.atusdata.org/atus/about_atus.shtml.  

Socio-demographic data. The files uploaded Census data for Los Angeles in Comma-
delimited (csv) format. Census data for LA. This data was employed to expand on the 
individual shopping behaviors to develop local/regional (in this case for LA) e-commerce 
demand. Note this data does not contain individual information but aggregated 
demographics for LA City. 

https://www.atusdata.org/atus/about_atus.shtml
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The project used the following proprietary datasets: 

Co-Star. Industrial and commercial real estate information for the Los Angeles, Orange, 
Empire, Riverside, and San Bernardino. The team is not able to share the raw-data due to 
the proprietary information. 

Analytical Tool. The Analytical Tool is a .xlsm file named "Last-mile Analysis.xlsm". This excel 
sheet contains the following sheets: 

1. Input 

This is the main/starting page of the tool. The Input sheet comprises of all the required 
inputs for last-mile analysis that pertain to 

• Service region characteristics: size of the service region, total e-commerce demand 
and more. 

• Demographics: Demographics in conjunction with the shopping behavior model 
(presented in "Demand Gen" sheet) are used to estimate the e-commerce demand 
of the service region. 

• Operator characteristics: type of distribution structure, type and number of 
facilities, planning horizon and more. 

• Vehicle characteristics: vehicle specifications. 

• Tour-vehicle combination: Vehicle used corresponding to tour type. 

• Charging levels: EV charging levels power and price. 

Data Access and Sharing  

The project uses publicly available information. Any dataset compiled during the project using 
the various data sources follows the same access and sharing policies as the original data. The 
research team did not use any data with private or confidential information with the exception 
of the Co-Star data. Due to the nature of that data, the team is not able to provide access to the 
dataset. The team made available the datasets used for the different modeling estimation 
processes, as well as the data used in the scenarios when implementing the framework through 
Dryad. Any other user should reference the research team and this project as directed by the 
National Center for Sustainable Transportation. 

Data can be found at: https://doi.org/10.25338/B82K67 

Reuse and Redistribution  

Any user should follow the copyright guidelines of the original datasets. For other sets 
produced by the research team, third party users should cite the work, and send an email to the 
PI, mjaller@ucdavis.edu to inform about the use of the data. The data may be cited as: 

Pahwa, Anmol; Jaller, Miguel (2020), Analytical Modeling Framework to Assess the 
Economic and Environmental Impacts of Residential Deliveries, and Evaluate Sustainable 
City Logistics Strategies, v2, UC Davis, Dataset, https://doi.org/10.25338/B82K67.  
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VIII. Appendix: Service efficiency impacts under varying time-windows 

In the text above, the study assesses the service efficiency effects for 3-hr time-window. The 
results below extend that analysis for delivery under no time-window and 1-hr time-window, 
the two extremes. While the results here are not too different from the ones presented in the 
text, the results are of particular interest as one can observe a continuous and gradual variation 
in cost and location from one extreme of no time-window, to the other extreme of 1-hr time 
window.  

 

Figure 15. Last-mile efficiency effects on total cost per customer under varying time-windows 

 

Figure 16. Last-mile efficiency effects on optimal location under varying time-window 
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